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Static Timing Analysis for Level-Clocked Circuits
in the Presence of Crosstalk

Soha Hassoun, Christopher Cromer, and Eduardo Calvillo-Gámez

Abstract—Static timing analysis is instrumental in efficiently verifying a
design’s temporal behavior to ensure correct functionality at the required
frequency. This paper addresses static timing analysis in the presence of
crosstalk for circuits containing level-sensitive latches, typical in high-per-
formance designs. The paper focuses on two problems. First, coupling in a
sequential circuit can occur because of the proximity of a victim’s switching
input to any periodicoccurrence of theaggressor’s input switching window.
This paper shows that only three consecutive periodic occurrences of the
aggressor’s input switching window must be considered. Second, an ar-
rival time in a sequential circuit is typically computed relative to a specific
clock phase. The paper proposes a new phase shift operator to align the ag-
gressor’s three relevant switching windows with the victim’s input signals.
This paper solves the static analysis problem for level-clocked circuits itera-
tively in polynomial time, and it shows an upper bound on the number of it-
erations equal to the number of capacitors in the circuit. The contributions
of this paper hold for any discrete overlapping coupling model. The exper-
imental results demonstrate that eliminating false coupling allows finding
a smaller clock period at which a circuit will run.

Index Terms—Crosstalk, design automation, timing, timing circuits, very
large scale integration.

I. INTRODUCTION

Shrinking process geometries have imposed new challenges in both
design and verification. One particular problem is the capacitive cou-
pling among two or more signals in the circuit. Coupling exists due
to the proximity of a wire to others that are either in the same layer
(lateral coupling) or in different layers (interlayer coupling). Coupling
creates undesirednoiseanddelay in the circuit. This phenomenon is
commonly referred to ascrosstalk.

Noise on a signal refers to creating voltage deviation from the nom-
inal supply and ground rails when the signals should otherwise have
been stable at a high or low value as dictated by the logic and delay of
the circuit [21]. Noise greater than the allowed noise margins causes
malfunctions.

Delay variation due to capacitive coupling refers to either speeding
or slowing the point in time where a switching net reaches itsreceiving
threshold, thus causing receiving gates in the immediate fanouts to
switch sooner or later than expected. The delay variation is depen-
dent on the relative arrival times of thevictim net and the aggressor(s)
net(s) that capacitively couple to the victim. If the victim is switching
in the same direction as the aggressor(s), then we haveassistive cou-
pling, and the victim switches sooner than anticipated. Delay improve-
ments could potentially cause race-through or double-clocking condi-
tions, and, thus, circuit failure. Withopposing coupling, the victim net
switches later due to opposing transition on the aggressor(s). Delay
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degradation causes performance failure; the circuit will not run at the
desired frequency. Static timing analysis techniques, which verify a de-
sign’s temporal behavior to ensure correct functionality at the required
frequency, must thus consider the effects of crosstalk.

Several static timing analysis techniques that consider crosstalk have
been proposed for combinational circuits. Some are based on iterative
techniques [3], [18]; some are based on the propagation of events [5];
others are based on more complex mathematical formulations [10].
The choice of what constitutes coupling (any overlap of the inputs’
switching windows v.s. more detailed coupling conditions) affect the
complexity of the algorithms. Consideration of the functional correla-
tion of the victim and the aggressors allows further accuracy in analysis
[2], [4], [25]. The worst case victim delay can be obtained by driver
modeling using reduced order modeling and worst case alignment of
the aggressors relative to the victim [7], [9], [22].

This paper addresses crosstalk analysis for circuits with level-sensi-
tive latches. Level-clocked circuits are certainly dominant in high-per-
formance designs because they can operate at faster clock rates than
edge-triggered circuits [8]. This is because, unlike edge-triggered regis-
ters, latches allow borrowing time across their boundaries. Researchers
have efficiently solved the problem of verifying a clock schedule [11],
[14], [23]. However, naively assuming worst case crosstalk while run-
ning these algorithms yields pessimistic clock periods.

A clock schedulespecifies the clock period and the relative timing
and duration of each of the phases in the schedule. Given a circuit and
a clock schedule, we solve the problem of clock schedule verification
in the presence of crosstalk. That is, we answer the following question.
Does the circuit run at the specified clock period given the phase wave-
forms imposed by the clock schedule?

The difficulty of the clock-schedule verification problem is twofold.
First, due to the periodic nature of signals in a sequential circuit, cou-
pling can occur because of the proximity of a victim’s switching input
to anyperiodicoccurrence of the aggressor’s input switching window.
More than one occurrence of the aggressor waveform must thus must
be compared against that of the victim. Second, the arrival times in a
level-clocked circuit are typically computed relative to a specific clock
phase. Translating the arrival times using a common reference point
will be needed to meaningfully compare the switching windows.

This paper addresses both of these problems. We show that only
three consecutive switching windows of the aggressor’s input must
be compared with the victim’s input switching window. To determine
overlap in switching windows at the inputs of the victim and aggressor,
we propose a phase shift operator that can translate values from the
aggressor’s to the victim’s time zones. The paper solves the clock-
schedule verification problem in the presence of crosstalk iteratively in
polynomial time. Furthermore, it shows an upper bound on the number
of iterations equal to the number of capacitors in the circuit.

Several discrete and continuous coupling models are possible for
representing the change in delay due to coupling. We choose to use the
dynamically bounded delay model [10], an abstract delay model that
allows a gate’s delay to be assigned one of many values depending on
related operating conditions. While more accurate continuous models
are possible, e.g., [6], the chosen model is a generalization of discrete
coupling models, such as ones that assume a 0 X, 1 X, or 2 X increase
in delay, e.g., [18]. While suffering from inaccuracies compared with
continuous models, discrete models require less computational com-
plexity. Furthermore, they have proved helpful in understanding the
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complex problem of static timing analysis in the presence of crosstalk.
Their use in this paper allowed us to achieve an understanding and de-
velop a solution to the coupling problem in level-clocked circuits. The
framework and solution proposed here can be easily extended to utilize
other discrete coupling models.

The paper is organized as follows. Section II reviews recent advances
in timing analysis for combinational circuits in the presence of crosstalk
and for level-clocked circuits. Section III introduces the clock-schedule
model, the gate-level delay model, and the circuit model. An example is
presented in Section IV. Timing equations to model correct circuit oper-
ation and coupling conditions are, respectively, derived in Sections V
and VI. Then, in Section VII, we present a polynomial algorithm to
verify the timing of a level-clocked circuit when given a clock schedule.
We conclude with experimental results.

II. RELATED WORK

A. Timing Analysis in the Presence of Crosstalk

Timing analysis techniques for noncyclic combinational circuits are
based on traversing an acyclic graph in a time linear in the number of
vertices and edges [13]. In the presence of crosstalk, however, such
techniques cannot be directly applied because one net can couple to
anotheranywherein the circuit. Mutual dependencies among the sig-
nals are created, effectively creating cycles in the underlying timing
graph. Iterative techniques have been proposed to solve this problem.
An initial solution is first assumed. New solutions are then iteratively
computed from previous ones, until the solution converges.

Several researchers have proposed such iterative solutions. Pileggi’s
group at Carnegie Mellon University model a gate driving anRC load
as a linear time-varying voltage source in series with a resistance
[9]. Their static timing analysis TACO [3] begins by maximizing
the switching windows for each signal—the earliest arrival times
are set to zero and the latest arrival times are set to infinity. Static
timing analysis is then run, computing all arrival times in the circuit
assuming worse case alignment of the aggressors. Analyzing the
output of this run, some aggressors are found to be nonaligned with the
victims. The arrival times for the victims are updated and propagated
using a static timing analysis run. The process repeats to tighten the
windows until the windows stop shrinking. Sapatnekar also proposes
an iterative approach [18]. Whenever switching windows of wires
overlap, then the delays are updated. Zhou, Shenoy, and Nicholls
establish a theoretical foundation for iterative techniques for timing
analysis with crosstalk [26]. They show that different initial solutions
lead to different convergent solutions. They also show that the optimal
fixpoint (tightest) solution is obtained by starting from the best case
solution that assumes no coupling.

B. Verifying Clock Schedules

The biggest challenge in formalizing the verification of clock sched-
ules for level-clocked circuits was creating a general clock-schedule
model to reflect borrowing across latch boundaries. Among first-gen-
eration timing-analysis tools, such as TA [1], TV [12], Crystal [15],
and LEADOUT [24], only the latter correctly verified borrowing
across latch boundaries. Second generation timing analysis tools,
developed in the early nineties, are based on formalizing the timing
constraints and developing efficient algorithms to solve them.
Sakallah, Mudge, and Olukoton developed the SMO model [16] which
was widely adopted within the timing verification and optimization
community. Ishii, Leiserson, and Papaefthymiou also provide a general
framework for the timing verification of two-phase level-clocked
circuits [11]. Schedule verification algorithms were based on one of
two approaches. The Sakallahet al. [17] and Szymanski and Shenoy
approaches[23] each advocate computing arrival times using iterative

Fig. 1. Example clock schedule that illustrates the SMO clocking model.

approaches based on successive relaxation of arrival and departure
times. Szymanski and Shenoy show that clock schedules can be
verified using a simple polynomial time algorithm modeled after the
Bellman–Ford shortest path algorithm [23]. Lockyear’s approach [14]
and Ishiiet al.’s approach [11], however, are based on determining the
amount of time in which a computation must complete. This approach
also results in efficient polynomial algorithms for verifying schedules.

III. PRELIMINARIES

A. Clock-Schedule Model

Our clock-schedule model is based on the SMO formulation [16].
An n-phase clock schedule is an ordered collection ofn periodic sig-
nals, (�1; . . . ; �n), having a common period�. Because phases are pe-
riodic, alocal time zoneof width� is associated with each phase. Each
phase�i is characterized by two parametersei andwi. Parameterei
represents the absolute time when�i begins (relative to an arbitrary
global time reference). Parameterwi is the length of time that�i is
active (latch is open). To translate one measurementa from the local
time zone of�i into thenextlocal time zone of�j , we subtract froma
a phase shift operatorEi;j , defined as

Ei;j =
ej � ei; if i < j

� + ej � ei; otherwise.

This clocking scheme is demonstrated in Fig. 1. If the clock period
� is 10 time units,wi = 5, wj = 5, andEij = 2, then an arrival of 8
in �i ’s time zone translates to an arrival of 6 in�j ’s time zone.

We assume that the design intention and, thus, the clock schedule
specify that a signal departing from a latchk must be captured by the
next latching edge (which occurs after the latching edge ofk) of the
following latch l. The earliest arrival time at the output of a latchk
clocked by�i is��wi, and it must arrive at the input of the following
latchl clocked by�j on or before latchl’s closing edge:�+Ei;j time
units after the beginning of�i. Setup and hold times are ignored to
simplify the presentation.

B. Delay Model

The dynamically bounded gate delay model [10], illustrated in Fig. 2,
captures most delay variations within the fixed range [�;�], while ex-
plicitly modeling all other variations. With a narrower fixed range,
more explicit variations must be represented. With a wider range, only
a few variations must be represented. If all variations are captured with
the [�;�] range, then our model is essentially the commonly used
fixed, ormin-max, delay model. Delays associated with crosscoupling
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Fig. 2. Dynamically bounded delay model.

are modeled as follows. Assume that the output of a nodev capacitively
couples to the output a nodea. With opposing coupling,v’s maximum
delay is increased by a�v;a. With assistive coupling,v’s minimum
delay is decreased by a value�v;a. A predicate indicates when this in-
crease or decrease must hold. To handle additive coupling or more de-
tailed conditions, predicates can conditionally specify when these de-
lays will be used.

C. Circuit Model

A circuit is modeled as a directed graphG = (V;E;C). Each vertex
in V represents either a primary input, primary output, a combinational
gate, or a latch. The set of all combinational gates is referred to as
VC , and the set of all latches is referred to asVL. Pv refers to the
set of predecessors of nodev 2 V . Each edge inE represents the
connectivity between two vertices.C represents the set of capacitors
in the circuit. A setCv is the set of aggressor nodes connected via a
capacitor to nodev. Each nodev has a dynamically bounded delay
model consisting of a fixed delay range [�v;�v ]. In addition, for each
coupling capacitance attached tov and an aggressor nodea, four delay
values:�v;a, �a;v , �v;a, and�a;v , and a predicate indicates when the
conditional delays should be considered.

We designate the latest (earliest) arrival time at a nodev asAv (av).
The latest (earliest) departure time from a node is denoted byDv (dv).
The time reference ofDv anddv is based on associating each node
v with a phasep(v) which is derived by analyzing the phases of the
latches in the combinational fanin and fanout of nodev.

IV. EXAMPLE

To understand how false coupling can produce pessimistic clock
schedules, consider the example circuit in Fig. 3(a). A worst case cou-
pling scenario assumes that signalsB andF couple, and signalsD and
H couple. The delay of each block is computed based on worst case op-
posing and assistive coupling. For example, the block generating signal
B will have a delay of [0,3] (i.e.,[1; 2]+=�1), and the arrival window
for signalB will be [5,9].

The ranges labeledA–H in Fig. 3(b) indicate the time ranges when
these nodes switch for a two-phase, symmetric, nonoverlapping clock
schedule with a period of 10 time units. SignalF must wait until the
opening edge of the�2 latch before the value is propagated. The
smallest possible clock period is forced to be at least 10, to accommo-
date the critical path, whose worst case delay is 15, from the input of
the block generating signalA to D. Using the schedule in Fig. 3(c), for
example, will not work since the period is 9. Other schedules with a
period of 10, such as ones with nonsymmetrical phases, will work.

The switching windows of signalsC andG overlap, thus, coupling
betweenD andH will cause additional delays for both signals. The
switching windows ofAandEare, however, far apart. Thus,Bswitches
without interference fromF. Noise might be possible on nodeF, but it
will certainly not affect its arrival times. The coupling betweenB andF

Fig. 3. Example circuit and schedules. (a) Circuit under consideration. Each
block has a bounded delay model: Delays are expressed as a range and the
conditional delay due to coupling is+= � 1. (b) A clock schedule with the
smallest allowed period of 10 when assuming all coupling causes delays. (c) A
clock schedule with a period of nine when false capacitive coupling betweenB
andF is eliminated.

is, thus, false. The delay of the critical path from the block generating
A through the block generatingD is 14 instead of 15. The schedule in
Fig. 3(c) can be used to clock this circuit. It has a smaller period than
the one in Fig. 3(b). Timing analysis that eliminates false coupling,
therefore, allows a faster schedule. In this example, the comparison of
the overlapping switching windows of the victims and the aggressors
was done in absolute time. However, arrival times are computed relative
to a specific latch’s time zone, and we must translate the time zone of
the aggressor to that of the victim (or vice versa) in order to compare
them correctly.
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Fig. 4. Aggressor’s and victim’s time zones are aligned. We must check for overlap between the switching windows of the inputs to the victim and aggressor
while considering all switching ranges.

V. TIMING EQUATIONS

The earliest and latest arriving signals at the inputs of the victim
and aggressor must be analyzed to determine if the switching windows
overlap. The latest arrival time at a combinational nodev

Av =
max8 (Dk �Ep(k);p(v)); if p(k) 6= p(v)

max8 Dk; if p(k) = p(v)
: (1)

If the phases associated with nodesk andv are different, then the de-
parture timeDk is adjusted byEp(k);p(v) to transfer the departure time
of k to v’s local time zone.

For a latchv with input k

Av = max(Dk �Ep(k);p(v); � � wp(v)): (2)

Here, the latest arrival time at the latch depends on the relative arrival
time of the signals at its inputDk and when the latch allows the data
through,��wp(v). If the input signalk arrives before the latch is open,
then it must wait until the latch opens beforek is passed through.

The departure time from a nodev, without capacitive coupling on its
output, can be specified as follows:

Dv = Av +�v: (3)

To computeDv , the departure time atv, we augment the latest arriving
input tov by an amount�v , the maximum propagation delay through
v.

For a nodev with capacitive coupling on its output through one or
more aggressor inCv , the maximum departure time is

Dv = Av +�v +
8a2C


v;a�v;a: (4)

This constraint ensures that the propagation delay ofv is augmented
by an amount�v;a when a nodev (the victim) experiences capaci-
tive coupling through an aggressora. Worst case opposing coupling
betweenv anda is assumed because we are not considering the func-
tional/logical behavior of the circuit. Variable
v;a is binary indicating
if the conditions for capacitive coupling hold. A description of condi-
tions that cause coupling is provided in Section VI.

Similarly, we specify constraints for minimum arrival and departure
times. For a combinational nodev

av =
min8 (dk � Ep(k);p(v)); if p(k) 6= p(v)

min8 dk; if p(k) = p(v)
: (5)

For a latchv

av = max(dk �Ep(k);p(v); � � wp(v)): (6)

The earliest departure time for a nodev can be specified as follows
assuming worst case assistive coupling between a victim nodev and
an aggressora:

dv = av + �v �

8a2C


v;a�v;a: (7)

VI. COUPLING CONDITIONS

Due to the periodicity of signals in a sequential circuit, coupling can
occur due to the overlap, or close proximity by an amount of� , of the
switching window at the input of the victim and anyperiodicswitching
window at the aggressor’s input.

Consider the situation depicted in Fig. 4, where the aggressor and
the victim have the same phasep(v) = p(a) resulting in aligned time
zones. When considering the maximum possible victim range and the
need to account for� , it is apparent that the victim’s input switching
window can overlap with either one, two, or three of the three possible
switching windows of the aggressor’s input: theprevious, thecurrent,
and thefollowing windows.

To determine if coupling exists, we must compare the overlap be-
tween the input switching windows with that of the three occurrences
of the aggressor. Whenp(v) = p(a), determining the overlap between
the inputs to the victim and thecurrent aggressor, is essentially the
same as for combinational circuits, namely

max(av; aa) � min(Av; Aa) + �:

The comparisons with the previous and following occurrences can
also be determined by noting that the previous occurrence of the ag-
gressor can be computed by subtracting� from the range, resulting in
[Aa � �; aa � �], while computing thefollowingoccurrence requires
adding�.

Whenp(v) 6= p(a), the arrival times at the input of the aggressor
must be translated to the victim’s local time zone to perform a mean-
ingful comparison. Consider the case in Fig. 5(a) with the following
assumptions: The clock period� = 10; ep(a) � ep(v) = 1; the SMO
phase shift operatorEa;v = �9; � = 1:01; and 50% duty cycle.
If the SMO shift operator is used to translate the aggressor ranges
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Fig. 5. Comparing overlapping windows. (a) Using the SMO shift operator of nine, coupling is not detected. (b) Using the new phase shift operator of�1,
coupling is detected.

[5 � �; 7 � �], [5,7], and [5 + �; 7 + �], then the ranges, respec-
tively, become [�14;�12], [�4;�2], and [6,8]. If the victim occur-
rence is [13,15], then comparing the translated aggressor ranges against
the victim’s will not indicate a coupling problem. However, the fourth
occurrence [16,18] was not considered. Because it is within� of the
victim occurrence, coupling should have been detected.

Consider another approach in which we designate the aggressor’s
current time zone as theclosestin time from the victim’s local time
zone. Thepreviousaggressor’s time zone is the one preceding thecur-
rent aggressor’s time zone. Thefollowing aggressor’s time zone is the
one succeeding thecurrentaggressor’s time zone.

To determine theclosestaggressor time zone, we compare the posi-
tions ofp(a) and thep(v). Recall from Section III-A that the phases
are ordered periodic signals and that each is associated with parameters
ei, the time when phasei begins relative to an absolute reference point.

If the victim’s time zone leads or lags the aggressor’s local time zone
by or less than�=2, (i.e.,��=2 � ep(v) � ep(a) � +�=2), then the
latter time zone is designated as thecurrent time zone. If the victim’s
time zone leads (occurs before) the aggressor’s local time zone by more

than�=2 (i.e.,ep(v) � ep(a) < ��=2), then the latter is designated as
a following time zone. Similarly, if the victim’s time zone lags (occurs
after) the aggressor’s local time zone by more than�=2 (i.e.,ep(v) �
ep(a) > �=2), then the latter time zone is designated asprevious.

To translate a value local to the aggressor’s time zone to the victim’s
time zone and to have that value appear as acurrent occurrence, we
define a new phase shift operatorE0

i;j as follows:

E0

i;j =

ej � ei + �; if ej � ei < �
�

2

ej � ei; if ��

2
� ej � ei � +�

2

ej � ei � �; if ej � ei > +�

2

:

This operator differs from the SMO phase shift operator. Consider
again the coupling scenario in Fig. 5. We examine the use of the new
phase shift operator which is illustrated in Fig. 5(b). In this case,
E0

p(a);p(v) = �1. Subtracting this phase shift operator, the three
aggressor ranges now become [�4;�2], [6,8], and [16,18]. When the
range [16,18] is compared against the victim’s range of [13,15], then
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coupling will be detected because this latter range is within� from
the [16,18] aggressor range.

Based on our analysis and our new operator, we can now define cou-
pling to occur in the following cases:

• coupling with the current occurrence:max(av ; aa � E0

a;v) �
min(Av; Aa � E0

a;v) + � ;
• coupling with the following occurrence:Av+� � aa�E

0

a;v+�
andAv > aa � Ea;v ;

• coupling with the previous occurrence:av � Aa+ � �E0

a;v��
andav � Aa � Ea;v .

If and only if one of the above coupling conditions holds, then the
binary
v;a is set to one.

VII. A LGORITHM

Our algorithm for verifying that a circuit runs correctly for a given
clock schedule is iterative. Initially, all coupling is assumed not to hold;
all 
v;a variables are set to zero. During each iteration, the steps below
are performed. This algorithm is run until no new
 variables are as-
signed.

Algorithm
1) Compute the latch-to-latch,

PI-to-latch, and latch-to-PO minimum
and maximum delays as outlined in
[19] . The run-time is dominated by

, where is the
number of latches in the circuit. Be-
cause the Szymanski/Shenoy algorithm in
the next step utilizes latch-to-latch
delays, the computation in this step
is needed to ensure the efficiency
of the latter algorithm. During each
iteration, the latch-to-latch delays
are recomputed because new variables
are assigned and the computed delays
will be different.

2) Using the delays computed in step 1,
run the Szymanski/Shenoy [23] algorithm
to compute the arrival and departure
times at the latches, PIs, and POs. The
run-time of the algorithm is .
Because the next step requires the ar-
rival times at the inputs to victims
and aggressors, a postprocessing step,
linear in the number of circuit nodes
and edges, produces these values.

3) Compare the switching windows as out-
lined in the previous section, and set
the appropriate binary variables.
The run-time is linear in the number
of nodes, assuming a small number of
aggressors is associated with each
victim.

Our algorithm is guaranteed to converge. Once a new
 is assigned,
the victim’s window is simply stretched (theAv becomes larger and
theav becomes smaller). Such a change in the victim’s window can
only cause other windows to either remain the same or further stretch.
The algorithm is guaranteed to converge injCj iterations because, in
the worst case, one
 variable is assigned true through each iteration.
Furthermore, once
 is assigned true, it does not change. OncejCj
iterations are completed, no switching windows change. The argument

TABLE I
SEQUENTIAL CIRCUITS FROM MCNC FSM BENCHMARKS. WE

LIST THE NUMBER OF PRIMARY INPUTS AND OUTPUTS,
LATCHES, AND COMBINATIONAL GATES

of continually shrinking or expanding switching windows was used to
prove convergence for timing analysis for combinational circuits [3],
[18]. Sapatnekar noted thatjCj iterations are needed for convergence
[18].

VIII. E XPERIMENTAL RESULTS

Our experiments evaluate the effectiveness of our algorithm in ver-
ifying clock schedules in the presence of crosstalk. Our benchmarks
are based on a subset of the edge-triggered Microelectronics Center
of North Carolina FSM circuits that we convert to circuits with level-
clocked latches. Sequential interactive synthesis was first used to per-
form logic optimization and mapping [20]. We then converted regis-
ters to back-to-back�1=�2 latches and used sskew, Lockyear’s re-
timing tool [14], to determine an equal, two-phase retiming, and initial
clock schedule. The combinational nodes in the circuit were initial-
ized with a maximum random delay within 2.5 and 0.5; the minimum
delay was then initialized with a random value that is at most 0.5 less
than the maximum delay. We then added random capacitors equal in
number to 10% of the total circuit nodes. Each capacitor was assigned
a random delay between 0.0 and 1.0. The circuits used are summarized
in Table I. We augmented the circuits with three larger ones:c1k, c2k,
andc4k. These circuit were obtained by stitching together the mapped
sandbenchmark and then generating delays and capacitors randomly
and converting the registers to latches.

We ran sskew to determine the worst and best clock schedules.
Table II lists themaximum periodthat assumes worst case capacitive
coupling, and the normalizedminimum period, which assumes no
coupling, in column 2 and 3, respectively. To find the best clock period
with our algorithm, we search the space starting with a minimum
clock period, incrementing this period by 10% of the maximum clock
period until we find a period at which the circuit ran. Because the
solution space may not be convex we avoided doing a binary search as
is possible when trying to determine the minimum clock period when
no coupling is considered (e.g., Lockyear’s approach [14]). The final
period is reported in columns 4 while column 5 lists the reduction
achieved with respect to the maximum possible reduction (i.e., the
difference between the maximum and minimum clock periods). The
final column lists the total run-time.

From our results in Table II, we see that only one circuit operated
at the maximum clock period. This circuit has a combinational delay
from a primary input to a primary output that sets the clock period. For
the others, the circuit ran at a smaller clock period than the maximum
one. Some circuits were able to run at the indicated minimum clock
period. The number of calculations to reach the minimum clock period
was one for all circuits except for circuits dk16, ex2, and ex6, for which
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TABLE II
RESULTSTABLE. THE MAXIMUM PERIOD COLUMN PRESENTS THEMAXIMUM

CLOCK PERIOD ASSUMING WORSTCASE CAPACITIVE COUPLING. THE

MINIMUM PERIOD COLUMN REPORTS THENORMALIZED MINIMUM POSSIBLE

PERIOD IGNORING ALL CAPACITIVE COUPLING. THE NORMALIZED FINAL

PERIOD IS FOUND BY OUR ITERATIVE ALGORITHM. THE FOLLOWING COLUMN

REPORTS THEPERCENTAGEREDUCTION. THE TOTAL TIME IS THE COMBINED

RUN TIME FOR ALL ITERATIONS IN SECONDS

TABLE III
THE NUMBER OF CAPS COLUMNS SHOWS THENUMBER OF CAPACITORS IN

THE CIRCUIT. THE FINAL COLUMN PRESENTS THECAPACITORS THAT

AFFECT THEFINAL ANALYSIS

the minimum period was obtained during the second calculation, and
for train4, where the minimum clock period was obtained during the
11th calculation. This fast convergence is due to the fact that more than
one capacitor was effective in contributing to the delay very early in
the algorithm. Table III lists the number of capacitors that affect delays
in the circuit.

The total run-times are shown in Table II. The 4K circuit c4k ran in
less than 6 min. All analyses were performed on a Sun Enterprise-250.
Run-times were collected using gethrtime system call which measures
user time. This is almost the same as CPU time considering that timing
analysis was the only active process running on the machine. Table IV
lists the run-times associated with each phase of the algorithm as out-
lined in the steps in Section VII.

Our results conclude that, for the set of examined benchmarks, it is
indeed possible to find a faster clock schedule using more accurate and
less pessimistic timing analysis. The implementation seems reasonably
fast for the examples presented. The run-time, however, may become
prohibitive for larger circuits. From the run-times in Table II, one can
see that the run-time grows approximately by a factor of 6 as the cir-
cuit size is doubled. Due to the unavailability of realistic public domain
larger benchmarks, it is not possible to further assess the implementa-
tion.

In light of comments by Szymanski and Shenoy [23], we make
the following two observations. First, the SMO equations [17] may
have more than one solution when the circuit is running at the optimal

TABLE IV
RUN-TIMES IN MILLISECONDS FORSTEPS1)–3)OF THE ALGORITHM DURING

THE FINAL CALCULATION OF OUR ALGORITHM

clock period. The slightest physical perturbation may cause the
circuit to switch from one solution to another. Szymanski and Shenoy
advise against operating a circuit at such an optimal clock period.
Crosstalk could potentially cause timing violations and, thus, errors
while switching from one operating point to another. Second, the
Szymanski and Shenoy algorithm depicts a simulation of the circuit
operation during the firstjVLj cycles once the power is turned on [23].
During such early simulation cycles, hold constraints may be violated
but could be corrected later as arrival times monotonically increase
to their steady-state values. The authors state that aresetoperation
should persist for as many asjVLj cycles to ensure proper operation.
Additional crosstalk analysis during reset is needed to ensure correct
operation.

IX. CONCLUSION

This is the first paper that addresses crosstalk analysis for circuits
with level-sensitive latches. The main contributions of this paper are:
1) showing the overlapping conditions necessary to detect changes
in delays due to coupling; 2) deriving a new phase shift operator to
conveniently translate the aggressor’s periodic occurrences to the
victim’s local time zone; and 3) presenting a polynomial algorithm
to solve timing verification for level-sensitive circuits in the presence
of crosstalk. These contributions are not specific for the dynamically
bounded gate-delay model, but they will hold for any discrete overlap-
ping coupling model. Our experiments demonstrate that eliminating
false coupling results in a tighter clock schedule.
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Local Watermarks: Methodology and Application
to Behavioral Synthesis

Darko Kirovski and Miodrag Potkonjak

Abstract—Recently, the electronic design automation industry has
adopted the intellectual property (IP) business model as a dominant
system-on-chip development platform. Since copyright fraud has been
recognized as the most devastating obstruction to this model, a number
of techniques for IP protection have been introduced. Most of them
rely on a selection of a global solution to a design optimization problem
according to a unique user-specific digital signature. Although such
techniques provide strong proof of authorship, they fail to provide an
effective procedure for watermark detection when a protected core design
is augmented into a larger design. To address this fundamental issue, we
introduce local watermarks, an IP protection technique which facilitates
watermark detection in many realistic design and adversarial scenarios,
while satisfying the demand for low overhead and design transparency. We
demonstrate the efficiency of the new IP protection paradigm by applying
its principles to a set of behavioral synthesis tasks such as operation
scheduling and template matching.

Index Terms—Behavioral synthesis, intellectual property protection, op-
eration scheduling, template matching, watermarking.

I. INTRODUCTION

Recently, a number of techniques have been proposed for intellec-
tual property protection (IPP) of designs and tools at various design
levels: design partitioning [1], physical layout [2], combinational logic
synthesis [3], [4], behavioral synthesis [5], and design-for-test [6]. All
of these techniques encode a user’s digital signature as a set of ad-
ditional design constraints, augment these constraints into the orig-
inal design specification, and optimize this input specification using an
off-the-shelf design tool that retrieves the final optimized design spec-
ification. The solution produced by the optimization tool satisfies both
the original and user-specific constraints. This property is the key to en-
abling a low likelihood that another algorithm (or designer) can build
such a solution with only the original design specifications as a starting
point. Although efficient, these techniques lack support for several im-
portant requirements.

• Effective signature detection.Since the encoding of a digital
signature is dependent upon the structure of theentire design
specification, detecting an embedded signature requires unique
identification of each component of the design [3]. Thus, even a
small design alteration by the adversary may negligibly, but sig-
nificantly alter the identifiers of design components resulting in
ineffective watermark detection.

• Protection of design partitions. Although current IPP tech-
niques are effective in protecting overall designs, they do not
provide protection for design partitions. Namely, in many designs
(cores), their parts may have substantial and independent value
(for example, a discrete cosign transform filter in an MPEG
codec).

• Watermark detection in systems with embedded IP.Com-
monly, a misappropriated design is augmented into a larger
system. In order to detect design’s watermark in the suspected
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